Probability Trees
In a bay there are 5 blue counters and red 3 counter. A counter is drawn at ramon, its colour noted and it is replaced in the bag. A second counter is dram and its colour noted.
Represent on a probability, tee.
lIst pick 2ndpick

$$
\begin{aligned}
& \quad \frac{3}{8} \times \frac{3}{8}=\frac{9}{64} \\
& B \checkmark \frac{3}{8} \times \frac{5}{8}=\frac{15}{64} \\
& R \checkmark \frac{5}{8} \times \frac{3}{8}=\frac{15}{64} \\
& \text { B } \frac{5}{8} \times \frac{5}{8}=\frac{25}{64}
\end{aligned}
$$

Possible Questions

1) Find prob both blue $=\frac{5}{8} \times \frac{5}{8}=\frac{25}{64}$
ii) Find pros exactly one of each colour

$$
\begin{aligned}
& =P(R B)+P(R R) \\
& =\frac{15}{64}+\frac{15}{64}=\frac{30}{64}
\end{aligned}
$$

iii) Find pros at least I Red

$$
\begin{aligned}
& =P(R R)+P(R B)+P(\nabla R) \\
& =\frac{9}{64}+\frac{15}{64}+\frac{15}{44}=\frac{39}{64}
\end{aligned}
$$

or $P($ at least | Red $)$

$$
\begin{aligned}
& =1-P\left(n_{0} \operatorname{Red}\right) \\
& =1-P(B B) \\
& =1-\frac{25}{64}=\frac{39}{64}
\end{aligned}
$$

The probability it is going to rain on any given day this week $=0.22$
Represent on a tie dagan for Tue and Wed

Tue Wed

$$
\sum_{0.78}^{0.22} \text { Rain } \begin{aligned}
& \left.\quad \begin{array}{l}
0.22 \\
S_{\text {Kain }} \\
\sum_{0.78}^{0.22} \text { fair } \text { fain }-0.22 \times 0.78
\end{array}\right)=0.1716 \times 0.22=0.1716
\end{aligned}
$$

Find prob it rains on exactly one of Tue or wed

$$
\begin{aligned}
& =P(R F)+P(F R) \\
& =0.1716+0.1716 \\
& =0.3432
\end{aligned}
$$

The pros a fridge brakes down in first year $=0.1$. The prob a washing machion beats down is 0.2 . Represent on tree diagram.

Find Prob (bots brace)

$$
=0.1 \times 0.2=0.02
$$

Hannah's Suect Probben on Board.

Regular Polygous

Exteron ange of regular

$$
\text { n-sidelpoly gon }=\frac{360^{\circ}}{n}
$$

Pentoger $\frac{360}{5}=72^{\circ}$

$$
\begin{aligned}
& \text { Interior arge }=180^{\circ}-\text { Cetrecion } \\
& \text { angle }
\end{aligned} \quad \begin{aligned}
\text { Pentigan Interiov } & =180-72 \\
& =108^{\circ}
\end{aligned}
$$

Sum of interior anglas of regular pentegen

$$
=108 \times 5=540^{\circ}
$$

In tact this is true for any pentagon

Angle son of pentagon $=3$ trinagbes worter

$$
3 \times 180=540^{\circ}
$$

Hexagon $4 \times 180^{\circ}=720^{\circ}$

Any n-sided polygon the interior angles sum to $(n-2) \times 180$

