## **General Motion**

## **Acceleration Variable**

3. A particle P of mass 0.3 kg is moving under the action of a single force  $\mathbf{F}$  newtons. At time t seconds the velocity of P,  $\mathbf{v}$  m s<sup>-1</sup>, is given by

$$\mathbf{v} = 3t^2\mathbf{i} + (6t - 4)\mathbf{j}.$$

(a) Calculate, to 3 significant figures, the magnitude of **F** when t = 2.

(5)

**(5)** 

When t = 0, P is at the point A. The position vector of A with respect to a fixed origin O is  $(3\mathbf{i} - 4\mathbf{j})$  m. When t = 4, P is at the point B.

(b) Find the position vector of B.

$$Y = \begin{pmatrix} 3t^2 \\ 6t - 4 \end{pmatrix} \qquad \underline{a} = \frac{dY}{dt} = \begin{pmatrix} 6t \\ 6 \end{pmatrix}$$

$$F = m \underline{a} = 0.3 \begin{pmatrix} 6t \\ 6 \end{pmatrix}$$
When  $t = 2$   $F = 0.3 \begin{pmatrix} 12 \\ 6 \end{pmatrix} = \begin{pmatrix} 3.6 \\ 1.8 \end{pmatrix}$ 

$$|F| = \sqrt{3.6^2 + 1.8^2} = 4.02 \text{ N}$$

3. A particle P of mass 0.3 kg is moving under the action of a single force  $\mathbf{F}$  newtons. At time t seconds the velocity of P,  $\mathbf{v}$  m s<sup>-1</sup>, is given by

$$\mathbf{v} = 3t^2\mathbf{i} + (6t - 4)\mathbf{j}.$$

(a) Calculate, to 3 significant figures, the magnitude of **F** when t = 2.

When t = 0, P is at the point A. The position vector of A with respect to a fixed origin O is  $(3\mathbf{i} - 4\mathbf{j})$  m. When t = 4, P is at the point B.

**(5)** 

(b) Find the position vector of B.

$$\underline{\Gamma} = \int \underline{V} dE = \int \left(\frac{3E^2}{6E-4}\right) dE$$

$$\underline{\Gamma} = \left(\frac{E^3 + c_1}{3E^2 - 4E + c_2}\right)$$
(5)

$$E = \begin{pmatrix} 3 \\ -4 \end{pmatrix} = C_1 = 3, C_2 = -4$$

$$E = \begin{pmatrix} 2 \\ -4 \end{pmatrix}$$

$$E = \begin{pmatrix} 2 \\ 4 \end{pmatrix}$$

$$S = \begin{pmatrix} 2 \\ 4 \end{pmatrix}$$

when 
$$\ell = 4$$
  $r = \begin{pmatrix} 4^3 + 3 \\ 3(4)^2 - 4(4) - 4 \end{pmatrix} = \begin{pmatrix} 67 \\ 28 \end{pmatrix}$ 

## Position vector of B = 672 + 28j